RX Drugnews homepage



  • Risperdal M-Tab Orally Disintegrating Tablets, Risperdal Tablets, Risperdal Oral Solution (Janssen)

    Increased Mortality in Elderly Patients with Dementia-Related Psychosis

    Elderly patients with dementia-related psychosis treated with atypical antipsychotic drugs are at an increased risk of death compared to placebo. Analyses of seventeen placebo controlled trials (modal duration of 10 weeks) in these patients revealed a risk of death in the drug-treated patients of between 1.6 to 1.7 times that seen in placebo-treated patients. Over the course of a typical 10 week controlled trial, the rate of death in drug-treated patients was about 4.5%, compared to a rate of about 2.6% in the placebo group. Although the causes of death were varied, most of the deaths appeared to be either cardiovascular (e.g., heart failure, sudden death) or infectious (e.g., pneumonia) in nature. RISPERDAL® (risperidone) is not approved for the treatment of patients with Dementia-Related Psychosis.

    DESCRIPTION

    RISPERDAL® (risperidone) is a psychotropic agent belonging to the chemical class of benzisoxazole derivatives. The chemical designation is 3-[2-[4-(6-fluoro-1,2-benzisoxazol-3-yl)-1-piperidinyl]ethyl]-6,7,8,9-tetrahydro-2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one. Its molecular formula is C 23 H 27 FN 4 O 2 and its molecular weight is 410.49. The structural formula is:

    Risperidone is a white to slightly beige powder. It is practically insoluble in water, freely soluble in methylene chloride, and soluble in methanol and 0.1 N HCl.

    RISPERDAL® tablets are available in 0.25 mg (dark yellow), 0.5 mg (red-brown), 1 mg (white), 2 mg (orange), 3 mg (yellow), and 4 mg (green) strengths. Inactive ingredients are colloidal silicon dioxide, hypromellose, lactose, magnesium stearate, microcrystalline cellulose, propylene glycol, sodium lauryl sulfate, and starch (corn). Tablets of 0.25, 0.5, 2, 3, and 4 mg also contain talc and titanium dioxide. The 0.25 mg tablets contain yellow iron oxide; the 0.5 mg tablets contain red iron oxide; the 2 mg tablets contain FD&C Yellow No. 6 Aluminum Lake; the 3 mg and 4 mg tablets contain D&C Yellow No. 10; the 4 mg tablets contain FD&C Blue No. 2 Aluminum Lake.

    RISPERDAL® is also available as a 1 mg/mL oral solution. The inactive ingredients for this solution are tartaric acid, benzoic acid, sodium hydroxide, and purified water.

    RISPERDAL® M-TAB® Orally Disintegrating Tablets are available in 0.5 mg, 1 mg, and 2 mg strengths and are light coral in color.

    RISPERDAL® M-TAB® Orally Disintegrating Tablets contain the following inactive ingredients: Amberlite® resin, gelatin, mannitol, glycine, simethicone, carbomer, sodium hydroxide, aspartame, red ferric oxide, and peppermint oil.

    CLINICAL PHARMACOLOGY

    Pharmacodynamics

    The mechanism of action of RISPERDAL® (risperidone), as with other drugs used to treat schizophrenia, is unknown. However, it has been proposed that the drug's therapeutic activity in schizophrenia is mediated through a combination of dopamine Type 2 (D 2 ) and serotonin Type 2 (5HT 2 ) receptor antagonism. Antagonism at receptors other than D 2 and 5HT 2 may explain some of the other effects of RISPERDAL® .

    RISPERDAL® is a selective monoaminergic antagonist with high affinity (Ki of 0.12 to 7.3 nM) for the serotonin Type 2 (5HT 2 ), dopamine Type 2 (D 2 ), (alpha) 1 and (alpha) 2 adrenergic, and H 1 histaminergic receptors. RISPERDAL® acts as an antagonist at other receptors, but with lower potency. RISPERDAL® has low to moderate affinity (Ki of 47 to 253 nM) for the serotonin 5HT 1C , 5HT 1D , and 5HT 1A receptors, weak affinity (Ki of 620 to 800 nM) for the dopamine D 1 and haloperidol-sensitive sigma site, and no affinity (when tested at concentrations >10 -5 M) for cholinergic muscarinic or (beta) 1 and (beta) 2 adrenergic receptors.

    Pharmacokinetics

    Absorption

    Risperidone is well absorbed. The absolute oral bioavailability of risperidone is 70% (CV=25%). The relative oral bioavailability of risperidone from a tablet is 94% (CV=10%) when compared to a solution.

    Pharmacokinetic studies showed that RISPERDAL® M-TAB® Orally Disintegrating Tablets and RISPERDAL® Oral Solution are bioequivalent to RISPERDAL® Tablets.

    Plasma concentrations of risperidone, its major metabolite, 9-hydroxyrisperidone, and risperidone plus 9-hydroxyrisperidone are dose proportional over the dosing range of 1 to 16 mg daily (0.5 to 8 mg BID). Following oral administration of solution or tablet, mean peak plasma concentrations of risperidone occurred at about 1 hour. Peak concentrations of 9-hydroxyrisperidone occurred at about 3 hours in extensive metabolizers, and 17 hours in poor metabolizers. Steady-state concentrations of risperidone are reached in 1 day in extensive metabolizers and would be expected to reach steady-state in about 5 days in poor metabolizers. Steady-state concentrations of 9-hydroxyrisperidone are reached in 5-6 days (measured in extensive metabolizers).

    Food Effect

    Food does not affect either the rate or extent of absorption of risperidone. Thus, risperidone can be given with or without meals.

    Distribution

    Risperidone is rapidly distributed. The volume of distribution is 1-2 L/kg. In plasma, risperidone is bound to albumin and (alpha) 1 -acid glycoprotein. The plasma protein binding of risperidone is 90%, and that of its major metabolite, 9-hydroxyrisperidone, is 77%. Neither risperidone nor 9-hy-droxyrisperidone displaces each other from plasma binding sites. High therapeutic concentrations of sulfamethazine (100 mcg/mL), warfarin (10 mcg/mL), and carbamazepine (10 mcg/mL) caused only a slight increase in the free fraction of risperidone at 10 ng/mL and 9-hydroxyrisperidone at 50 ng/mL, changes of unknown clinical significance.

    Metabolism

    Risperidone is extensively metabolized in the liver. The main metabolic pathway is through hydroxylation of risperidone to 9-hydroxyrisperidone by the enzyme, CYP 2D6. A minor metabolic pathway is through N -dealkylation. The main metabolite, 9-hydroxyrisperidone, has similar pharmacological activity as risperidone. Consequently, the clinical effect of the drug (e.g., the active moiety) results from the combined concentrations of risperidone plus 9-hydroxyrisperidone.

    CYP 2D6, also called debrisoquin hydroxylase, is the enzyme responsible for metabolism of many neuroleptics, antidepressants, antiarrhythmics, and other drugs. CYP 2D6 is subject to genetic polymorphism (about 6%-8% of Caucasians, and a very low percentage of Asians, have little or no activity and are "poor metabolizers") and to inhibition by a variety of substrates and some non-substrates, notably quinidine. Extensive CYP 2D6 metabolizers convert risperidone rapidly into 9-hydroxyrisperidone, whereas poor CYP 2D6 metabolizers convert it much more slowly. Although extensive metabolizers have lower risperidone and higher 9-hydroxyrisperidone concentrations than poor metabolizers, the pharmacokinetics of the active moiety, after single and multiple doses, are similar in extensive and poor metabolizers.

    Risperidone could be subject to two kinds of drug-drug interactions (see PRECAUTIONS -- Drug Interactions ). First, inhibitors of CYP 2D6 interfere with conversion of risperidone to 9-hydroxyrisperidone. This occurs with quinidine, giving essentially all recipients a risperidone pharmacokinetic profile typical of poor metabolizers. The therapeutic benefits and adverse effects of risperidone in patients receiving quinidine have not been evaluated, but observations in a modest number (n [cong ] 70) of poor metabolizers given risperidone do not suggest important differences between poor and extensive metabolizers. Second, co-administration of known enzyme inducers (e.g., phenytoin, rifampin, and phenobarbital) with risperidone may cause a decrease in the combined plasma concentrations of risperidone and 9-hydroxyrisperidone. It would also be possible for risperidone to interfere with metabolism of other drugs metabolized by CYP 2D6. Relatively weak binding of risperidone to the enzyme suggests this is unlikely.

    In a drug interaction study in schizophrenic patients, 11 subjects received risperidone titrated to 6 mg/day for 3 weeks, followed by concurrent administration of carbamazepine for an additional 3 weeks. During co-administration, the plasma concentrations of risperidone and its pharmacologically active metabolite, 9-hydroxyrisperidone, were decreased by about 50%. Plasma concentrations of carbamazepine did not appear to be affected. Co-administration of other known enzyme inducers (e.g., phenytoin, rifampin, and phenobarbital) with risperidone may cause similar decreases in the combined plasma concentrations of risperidone and 9-hydroxyrisperidone, which could lead to decreased efficacy of risperidone treatment (see PRECAUTIONS - Drug Interactions and DOSAGE AND ADMINISTRATION - Co-Administration of RISPERDAL® with Certain Other Medications ).

    Fluoxetine (20 mg QD) and paroxetine (20 mg QD) have been shown to increase the plasma concentration of risperidone 2.5-2.8 fold and 3-9 fold respectively. Fluoxetine did not affect the plasma concentration of 9-hydroxyrisperidone. Paroxetine lowered the concentration of 9-hydroxyrisperidone an average of 13% (see PRECAUTIONS - Drug Interactions and DOSAGE AND ADMINISTRATION - Co-Administration of RISPERDAL® with Certain Other Medications ).

    Repeated oral doses of risperidone (3 mg BID) did not affect the exposure (AUC) or peak plasma concentrations (C max ) of lithium (n=13) (see PRECAUTIONS - Drug Interactions ).

    Repeated oral doses of risperidone (4 mg QD) did not affect the pre-dose or average plasma concentrations and exposure (AUC) of valproate (1000 mg/day in three divided doses) compared to placebo (n=21). However, there was a 20% increase in valproate peak plasma concentration (C max ) after concomitant administration of risperidone (see PRECAUTIONS - Drug Interactions ).

    There were no significant interactions between risperidone (1 mg QD) and erythromycin (500 mg QID) (see PRECAUTIONS - Drug Interactions ).

    Excretion

    Risperidone and its metabolites are eliminated via the urine and, to a much lesser extent, via the feces. As illustrated by a mass balance study of a single 1 mg oral dose of 14 C-risperidone administered as solution to three healthy male volunteers, total recovery of radioactivity at 1 week was 84%, including 70% in the urine and 14% in the feces.

    The apparent half-life of risperidone was 3 hours (CV=30%) in extensive metabolizers and 20 hours (CV=40%) in poor metabolizers. The apparent half-life of 9-hydroxyrisperidone was about 21 hours (CV=20%) in extensive metabolizers and 30 hours (CV=25%) in poor metabolizers. The pharmacokinetics of the active moiety, after single and multiple doses, were similar in extensive and poor metabolizers, with an overall mean elimination half-life of about 20 hours.

    Special Populations

    Renal Impairment

    In patients with moderate to severe renal disease, clearance of the sum of risperidone and its active metabolite decreased by 60% compared to young healthy subjects. RISPERDAL® doses should be reduced in patients with renal disease (see PRECAUTIONS and DOSAGE AND ADMINISTRATION ).

    Hepatic Impairment

    While the pharmacokinetics of risperidone in subjects with liver disease were comparable to those in young healthy subjects, the mean free fraction of risperidone in plasma was increased by about 35% because of the diminished concentration of both albumin and (alpha) 1 -acid glycoprotein. RISPERDAL® doses should be reduced in patients with liver disease (see PRECAUTIONS and DOSAGE AND ADMINISTRATION

    Elderly

    In healthy elderly subjects, renal clearance of both risperidone and 9-hydroxyrisperidone was decreased, and elimination half-lives were prolonged compared to young healthy subjects. Dosing should be modified accordingly in the elderly patients (see DOSAGE AND ADMINISTRATION ).

    Race and Gender Effects

    No specific pharmacokinetic study was conducted to investigate race and gender effects, but a population pharmacokinetic analysis did not identify important differences in the disposition of risperidone due to gender (whether corrected for body weight or not) or race.

    CLINICAL TRIALS

    Schizophrenia

    Short-Term Efficacy

    The efficacy of RISPERDAL® in the treatment of schizophrenia was established in four short-term (4- to 8-week) controlled trials of psychotic inpatients who met DSM-III-R criteria for schizophrenia.

    Several instruments were used for assessing psychiatric signs and symptoms in these studies, among them the Brief Psychiatric Rating Scale (BPRS), a multi-item inventory of general psychopathology traditionally used to evaluate the effects of drug treatment in schizophrenia. The BPRS psychosis cluster (conceptual disorganization, hallucinatory behavior, suspiciousness, and unusual thought content) is considered a particularly useful subset for assessing actively psychotic schizophrenic patients. A second traditional assessment, the Clinical Global Impression (CGI), reflects the impression of a skilled observer, fully familiar with the manifestations of schizophrenia, about the overall clinical state of the patient. In addition, the Positive and Negative Syndrome Scale (PANSS) and the Scale for Assessing Negative Symptoms (SANS) were employed.

    The results of the trials follow:

    1. In a 6-week, placebo-controlled trial (n=160) involving titration of RISPERDAL® in doses up to 10 mg/day (BID schedule), RISPERDAL® was generally superior to placebo on the BPRS total score, on the BPRS psychosis cluster, and marginally superior to placebo on the SANS.
    2. In an 8-week, placebo-controlled trial (n=513) involving 4 fixed doses of RISPERDAL® (2, 6, 10, and 16 mg/day, on a BID schedule), all 4 RISPERDAL® groups were generally superior to placebo on the BPRS total score, BPRS psychosis cluster, and CGI severity score; the 3 highest RISPERDAL® dose groups were generally superior to placebo on the PANSS negative subscale. The most consistently positive responses on all measures were seen for the 6 mg dose group, and there was no suggestion of increased benefit from larger doses.
    3. In an 8-week, dose comparison trial (n=1356) involving 5 fixed doses of RISPERDAL® (1, 4, 8, 12, and 16 mg/day, on a BID schedule), the four highest RISPERDAL® dose groups were generally superior to the 1 mg RISPERDAL® dose group on BPRS total score, BPRS psychosis cluster, and CGI severity score. None of the dose groups were superior to the 1 mg group on the PANSS negative subscale. The most consistently positive responses were seen for the 4 mg dose group.
    4. In a 4-week, placebo-controlled dose comparison trial (n=246) involving 2 fixed doses of RISPERDAL® (4 and 8 mg/day on a QD schedule), both RISPERDAL® dose groups were generally superior to placebo on several PANSS measures, including a response measure (> 20% reduction in PANSS total score), PANSS total score, and the BPRS psychosis cluster (derived from PANSS). The results were generally stronger for the 8 mg than for the 4 mg dose group.

    Long-Term Efficacy

    In a longer-term trial, 365 adult outpatients predominantly meeting DSM-IV criteria for schizophrenia and who had been clinically stable for at least 4 weeks on an antipsychotic medication were randomized to RISPERDAL® (2-8 mg/day) or to an active comparator, for 1 to 2 years of observation for relapse. Patients receiving RISPERDAL® experienced a significantly longer time to relapse over this time period compared to those receiving the active comparator.

    Bipolar Mania

    Monotherapy

    The efficacy of RISPERDAL® in the treatment of acute manic or mixed episodes was established in 2 short-term (3-week) placebo-controlled trials in patients who met the DSM-IV criteria for Bipolar I Disorder with manic or mixed episodes. These trials included patients with or without psychotic features.

    The primary rating instrument used for assessing manic symptoms in these trials was the Young Mania Rating Scale (Y-MRS), an 11-item clinician-rated scale traditionally used to assess the degree of manic symptomatology (irritability, disruptive/aggressive behavior, sleep, elevated mood, speech, increased activity, sexual interest, language/thought disorder, thought content, appearance, and insight) in a range from 0 (no manic features) to 60 (maximum score). The primary outcome in these trials was change from baseline in the Y-MRS total score. The results of the trials follow:

    1. In one 3-week placebo-controlled trial (n=246), limited to patients with manic episodes, which involved a dose range of RISPERDAL® 1-6 mg/day, once daily, starting at 3 mg/day (mean modal dose was 4.1 mg/day), RISPERDAL® was superior to placebo in the reduction of Y-MRS total score.
    2. In another 3-week placebo-controlled trial (n=286), which involved a dose range of 1-6 mg/day, once daily, starting at 3 mg/day (mean modal dose was 5.6 mg/day), RISPERDAL® was superior to placebo in the reduction of Y-MRS total score.

    Combination Therapy

    The efficacy of risperidone with concomitant lithium or valproate in the treatment of acute manic or mixed episodes was established in one controlled trial in patients who met the DSM-IV criteria for Bipolar I Disorder. This trial included patients with or without psychotic features and with or without a rapid-cycling course.

    1. In this 3-week placebo-controlled combination trial, 148 in- or outpatients on lithium or valproate therapy with inadequately controlled manic or mixed symptoms were randomized to receive RISPERDAL®, placebo, or an active comparator, in combination with their original therapy. RISPERDAL®, in a dose range of 1-6 mg/day, once daily, starting at 2 mg/day (mean modal dose of 3.8 mg/day), combined with lithium or valproate (in a therapeutic range of 0.6 mEq/L to 1.4 mEq/L or 50 mcg/mL to 120 mcg/mL, respectively) was superior to lithium or valproate alone in the reduction of Y-MRS total score.
    2. In a second 3-week placebo-controlled combination trial, 142 in- or outpatients on lithium, valproate, or carbamazepine therapy with inadequately controlled manic or mixed symptoms were randomized to receive RISPERDAL® or placebo, in combination with their original therapy. RISPERDAL®, in a dose range of 1-6 mg/day, once daily, starting at 2 mg/day (mean modal dose of 3.7 mg/day), combined with lithium, valproate, or carbamazepine (in therapeutic ranges of 0.6 mEq/L to 1.4 mEq/L for lithium, 50 mcg/mL to 125 mcg/mL for valproate, or 4-12 mcg/mL for carbamazepine, respectively) was not superior to lithium, valproate, or carbamazepine alone in the reduction of Y-MRS total score. A possible explanation for the failure of this trial was induction of risperidone and 9-hydroxyrisperidone clearance by carbamazepine, leading to subtherapeutic levels of risperidone and 9-hydroxyrisperidone.

    INDICATIONS AND USAGE

    Schizophrenia

    RISPERDAL® (risperidone) is indicated for the treatment of schizophrenia.

    The efficacy of RISPERDAL® in schizophrenia was established in short-term (6- to 8-weeks) controlled trials of schizophrenic inpatients (see CLINICAL PHARMACOLOGY ).

    The efficacy of RISPERDAL® in delaying relapse was demonstrated in schizophrenic patients who had been clinically stable for at least 4 weeks before initiation of treatment with RISPERDAL® or an active comparator and who were then observed for relapse during a period of 1 to 2 years (see CLINICAL PHARMACOLOGY - Clinical Trials ). Nevertheless, the physician who elects to use RISPERDAL® for extended periods should periodically re-evaluate the long-term usefulness of the drug for the individual patient (see DOSAGE AND ADMINISTRATION ).

    Bipolar Mania

    Monotherapy

    RISPERDAL® is indicated for the short-term treatment of acute manic or mixed episodes associated with Bipolar I Disorder.

    The efficacy of RISPERDAL® was established in two placebo-controlled trials (3-week) with patients meeting DSM-IV criteria for Bipolar I Disorder who currently displayed an acute manic or mixed episode with or without psychotic features (see CLINICAL PHARMACOLOGY ).

    Combination Therapy

    The combination of RISPERDAL® with lithium or valproate is indicated for the short-term treatment of acute manic or mixed episodes associated with Bipolar I Disorder.

    The efficacy of RISPERDAL® in combination with lithium or valproate was established in one placebo-controlled (3-week) trial with patients meeting DSM-IV criteria for Bipolar I Disorder who currently displayed an acute manic or mixed episode with or without psychotic features (see CLINICAL PHARMACOLOGY ).

    The effectiveness of RISPERDAL® for longer-term use, that is, for more than 3 weeks of treatment of an acute episode, and for prophylactic use in mania, has not been systematically evaluated in controlled clinical trials. Therefore, physicians who elect to use RISPERDAL® for extended periods should periodically re-evaluate the long-term risks and benefits of the drug for the individual patient (see DOSAGE AND ADMINISTRATION ).

    CONTRAINDICATIONS

    RISPERDAL® (risperidone) is contraindicated in patients with a known hypersensitivity to the product.

    WARNINGS

    Increased Mortality in Elderly Patients with Dementia-Related Psychosis

    Elderly patients with dementia-related psychosis treated with atypical antipsychotic drugs are at an increased risk of death compared to placebo. RISPERAL® (risperidone) is not approved for the treatment of dementia-related psychosis (see Boxed Warning ).

    Neuroleptic Malignant Syndrome (NMS)

    A potentially fatal symptom complex sometimes referred to as Neuroleptic Malignant Syndrome (NMS) has been reported in association with antipsychotic drugs. Clinical manifestations of NMS are hyperpyrexia, muscle rigidity, altered mental status, and evidence of autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis, and cardiac dysrhythmia). Additional signs may include elevated creatinine phosphokinase, myoglobinuria (rhabdomyolysis), and acute renal failure.

    The diagnostic evaluation of patients with this syndrome is complicated. In arriving at a diagnosis, it is important to identify cases in which the clinical presentation includes both serious medical illness (e.g., pneumonia, systemic infection, etc.) and untreated or inadequately treated extrapyramidal signs and symptoms (EPS). Other important considerations in the differential diagnosis include central anticholinergic toxicity, heat stroke, drug fever, and primary central nervous system pathology.

    The management of NMS should include: (1) immediate discontinuation of antipsychotic drugs and other drugs not essential to concurrent therapy; (2) intensive symptomatic treatment and medical monitoring; and (3) treatment of any concomitant serious medical problems for which specific treatments are available. There is no general agreement about specific pharmacological treatment regimens for uncomplicated NMS.

    If a patient requires antipsychotic drug treatment after recovery from NMS, the potential reintroduction of drug therapy should be carefully considered. The patient should be carefully monitored, since recurrences of NMS have been reported.

    Tardive Dyskinesia

    A syndrome of potentially irreversible, involuntary, dyskinetic movements may develop in patients treated with antipsychotic drugs. Although the prevalence of the syndrome appears to be highest among the elderly, especially elderly women, it is impossible to rely upon prevalence estimates to predict, at the inception of antipsychotic treatment, which patients are likely to develop the syndrome. Whether antipsychotic drug products differ in their potential to cause tardive dyskinesia is unknown.

    The risk of developing tardive dyskinesia and the likelihood that it will become irreversible are believed to increase as the duration of treatment and the total cumulative dose of antipsychotic drugs administered to the patient increase. However, the syndrome can develop, although much less commonly, after relatively brief treatment periods at low doses.

    There is no known treatment for established cases of tardive dyskinesia, although the syndrome may remit, partially or completely, if antipsychotic treatment is withdrawn. Antipsychotic treatment, itself, however, may suppress (or partially suppress) the signs and symptoms of the syndrome and thereby may possibly mask the underlying process. The effect that symptomatic suppression has upon the long-term course of the syndrome is unknown.

    Given these considerations, RISPERDAL® (risperidone) should be prescribed in a manner that is most likely to minimize the occurrence of tardive dyskinesia. Chronic antipsychotic treatment should generally be reserved for patients who suffer from a chronic illness that (1) is known to respond to antipsychotic drugs, and (2) for whom alternative, equally effective, but potentially less harmful treatments are not available or appropriate. In patients who do require chronic treatment, the smallest dose and the shortest duration of treatment producing a satisfactory clinical response should be sought. The need for continued treatment should be reassessed periodically.

    If signs and symptoms of tardive dyskinesia appear in a patient treated on RISPERDAL®, drug discontinuation should be considered. However, some patients may require treatment with RISPERDAL® despite the presence of the syndrome.

    Cerebrovascular Adverse Events, Including Stroke, in Elderly Patients With Dementia-Related Psychosis

    Cerebrovascular adverse events (e.g., stroke, transient ischemic attack), including fatalities, were reported in patients (mean age 85 years; range 73-97) in trials of risperidone in elderly patients with dementia-related psychosis. In placebo-controlled trials, there was a significantly higher incidence of cerebrovascular adverse events in patients treated with risperidone compared to patients treated with placebo. RISPERDAL® is not approved for the treatment of patients with dementia-related psychosis. (See also Boxed WARNING, WARNINGS: Increased Mortality in Elderly Patients with Dementia-Related Psychosis.)

    Hyperglycemia and Diabetes Mellitus

    Hyperglycemia, in some cases extreme and associated with ketoacidosis or hyperosmolar coma or death, has been reported in patients treated with atypical antipsychotics including RISPERDAL®. Assessment of the relationship between atypical antipsychotic use and glucose abnormalities is complicated by the possibility of an increased background risk of diabetes mellitus in patients with schizophrenia and the increasing incidence of diabetes mellitus in the general population. Given these confounders, the relationship between atypical antipsychotic use and hyperglycemia-related adverse events is not completely understood. However, epidemiological studies suggest an increased risk of treatment-emergent hyperglycemia-related adverse events in patients treated with the atypical antipsychotics. Precise risk estimates for hyperglycemia-related adverse events in patients treated with atypical antipsychotics are not available.

    Patients with an established diagnosis of diabetes mellitus who are started on atypical antipsychotics should be monitored regularly for worsening of glucose control. Patients with risk factors for diabetes mellitus (e.g., obesity, family history of diabetes) who are starting treatment with atypical antipsychotics should undergo fasting blood glucose testing at the beginning of treatment and periodically during treatment. Any patient treated with atypical antipsychotics should be monitored for symptoms of hyperglycemia including polydipsia, polyuria, polyphagia, and weakness. Patients who develop symptoms of hyperglycemia during treatment with atypical antipsychotics should undergo fasting blood glucose testing. In some cases, hyperglycemia has resolved when the atypical antipsychotic was discontinued; however, some patients required continuation of anti-diabetic treatment despite discontinuation of the suspect drug.

    PRECAUTIONS

    General

    Orthostatic Hypotension

    RISPERDAL® (risperidone) may induce orthostatic hypotension associated with dizziness, tachycardia, and in some patients, syncope, especially during the initial dose-titration period, probably reflecting its alpha-adrenergic antagonistic properties. Syncope was reported in 0.2% (6/2607) of RISPERDAL®-treated patients in Phase 2 and 3 studies. The risk of orthostatic hypotension and syncope may be minimized by limiting the initial dose to 2 mg total (either QD or 1 mg BID) in normal adults and 0.5 mg BID in the elderly and patients with renal or hepatic impairment (see DOSAGE AND ADMINISTRATION ). Monitoring of orthostatic vital signs should be considered in patients for whom this is of concern. A dose reduction should be considered if hypotension occurs. RISPERDAL® should be used with particular caution in patients with known cardiovascular disease (history of myocardial infarction or ischemia, heart failure, or conduction abnormalities), cerebrovascular disease, and conditions which would predispose patients to hypotension, e.g., dehydration and hypovolemia. Clinically significant hypotension has been observed with concomitant use of RISPERDAL® and antihypertensive medication.

    Seizures

    During premarketing testing, seizures occurred in 0.3% (9/2607) of RISPERDAL®-treated patients, two in association with hyponatremia. RISPERDAL® should be used cautiously in patients with a history of seizures.

    Dysphagia

    Esophageal dysmotility and aspiration have been associated with antipsychotic drug use. Aspiration pneumonia is a common cause of morbidity and mortality in patients with advanced Alzheimer's dementia. RISPERDAL® and other antipsychotic drugs should be used cautiously in patients at risk for aspiration pneumonia. (See also Boxed WARNING, WARNINGS: Increased Mortality in Elderly Patients with Dementia-Related Psychosis .)

    Hyperprolactinemia

    As with other drugs that antagonize dopamine D 2 receptors, risperidone elevates prolactin levels and the elevation persists during chronic administration. Tissue culture experiments indicate that approximately one-third of human breast cancers are prolactin dependent in vitro , a factor of potential importance if the prescription of these drugs is contemplated in a patient with previously detected breast cancer. Although disturbances such as galactorrhea, amenorrhea, gynecomastia, and impotence have been reported with prolactin-elevating compounds, the clinical significance of elevated serum prolactin levels is unknown for most patients. As is common with compounds which increase prolactin release, an increase in pituitary gland, mammary gland, and pancreatic islet cell hyperplasia and/or neoplasia was observed in the risperidone carcinogenicity studies conducted in mice and rats (see PRECAUTIONS - Carcinogenesis, Mutagenesis, Impairment of Fertility ). However, neither clinical studies nor epidemiologic studies conducted to date have shown an association between chronic administration of this class of drugs and tumorigenesis in humans; the available evidence is considered too limited to be conclusive at this time.

    Potential for Cognitive and Motor Impairment

    Somnolence was a commonly reported adverse event associated with RISPERDAL® treatment, especially when ascertained by direct questioning of patients. This adverse event is dose-related, and in a study utilizing a checklist to detect adverse events, 41% of the high-dose patients (RISPERDAL® 16 mg/day) reported somnolence compared to 16% of placebo patients. Direct questioning is more sensitive for detecting adverse events than spontaneous reporting, by which 8% of RISPERDAL® 16 mg/day patients and 1% of placebo patients reported somnolence as an adverse event. Since RISPERDAL® has the potential to impair judgment, thinking, or motor skills, patients should be cautioned about operating hazardous machinery, including automobiles, until they are reasonably certain that RISPERDAL® therapy does not affect them adversely.

    Priapism

    Rare cases of priapism have been reported. While the relationship of the events to RISPERDAL® use has not been established, other drugs with alpha-adrenergic blocking effects have been reported to induce priapism, and it is possible that RISPERDAL® may share this capacity. Severe priapism may require surgical intervention.

    Thrombotic Thrombocytopenic Purpura (TTP)

    A single case of TTP was reported in a 28 year-old female patient receiving RISPERDAL® in a large, open premarketing experience (approximately 1300 patients). She experienced jaundice, fever, and bruising, but eventually recovered after receiving plasmapheresis. The relationship to RISPERDAL® therapy is unknown.

    Antiemetic Effect

    Risperidone has an antiemetic effect in animals; this effect may also occur in humans, and may mask signs and symptoms of overdosage with certain drugs or of conditions such as intestinal obstruction, Reye's syndrome, and brain tumor.

    Body Temperature Regulation

    Disruption of body temperature regulation has been attributed to antipsychotic agents. Both hyperthermia and hypothermia have been reported in association with oral RISPERDAL® use. Caution is advised when prescribing for patients who will be exposed to temperature extremes.

    Suicide

    The possibility of a suicide attempt is inherent in schizophrenia, and close supervision of high-risk patients should accompany drug therapy. Prescriptions for RISPERDAL® should be written for the smallest quantity of tablets, consistent with good patient management, in order to reduce the risk of overdose.

    Use in Patients With Concomitant Illness

    Clinical experience with RISPERDAL® in patients with certain concomitant systemic illnesses is limited. Patients with Parkinson's Disease or Dementia with Lewy Bodies who receive antipsychotics, including RISPERDAL®, may be at increased risk of Neuroleptic Malignant Syndrome as well as having an increased sensitivity to antipsychotic medications. Manifestation of this increased sensitivity can include confusion, obtundation, postural instability with frequent falls, in addition to extrapyramidal symptoms.

    Caution is advisable in using RISPERDAL® in patients with diseases or conditions that could affect metabolism or hemodynamic responses. RISPERDAL® has not been evaluated or used to any appreciable extent in patients with a recent history of myocardial infarction or unstable heart disease. Patients with these diagnoses were excluded from clinical studies during the product's premarket testing.

    Increased plasma concentrations of risperidone and 9-hydroxyrisperidone occur in patients with severe renal impairment (creatinine clearance <30 mL/min/1.73 m 2 ), and an increase in the free fraction of risperidone is seen in patients with severe hepatic impairment. A lower starting dose should be used in such patients (see DOSAGE AND ADMINISTRATION ).

    Information for Patients

    Physicians are advised to discuss the following issues with patients for whom they prescribe RISPERDAL®:

    Orthostatic Hypotension

    Patients should be advised of the risk of orthostatic hypotension, especially during the period of initial dose titration.

    Interference With Cognitive and Motor Performance

    Since RISPERDAL® has the potential to impair judgment, thinking, or motor skills, patients should be cautioned about operating hazardous machinery, including automobiles, until they are reasonably certain that RISPERDAL® therapy does not affect them adversely.

    Pregnancy

    Patients should be advised to notify their physician if they become pregnant or intend to become pregnant during therapy.

    Nursing

    Patients should be advised not to breast-feed an infant if they are taking RISPERDAL®.

    Concomitant Medication

    Patients should be advised to inform their physicians if they are taking, or plan to take, any prescription or over-the-counter drugs, since there is a potential for interactions.

    Alcohol

    Patients should be advised to avoid alcohol while taking RISPERDAL®.

    Phenylketonurics

    Phenylalanine is a component of aspartame. Each 2 mg RISPERDAL® M-TAB® Orally Disintegrating Tablet contains 0.56 mg phenylalanine; each 1 mg RISPERDAL® M-TAB® Orally Disintegrating Tablet contains 0.28 mg phenylalanine; and each 0.5 mg RISPERDAL® M-TAB® Orally Disintegrating Tablet contains 0.14 mg phenylalanine.

    Laboratory Tests

    No specific laboratory tests are recommended.

    Drug Interactions

    The interactions of RISPERDAL® and other drugs have not been systematically evaluated. Given the primary CNS effects of risperidone, caution should be used when RISPERDAL® is taken in combination with other centrally acting drugs and alcohol.

    Because of its potential for inducing hypotension, RISPERDAL® may enhance the hypotensive effects of other therapeutic agents with this potential.

    RISPERDAL® may antagonize the effects of levodopa and dopamine agonists.

    Amytriptyline does not affect the pharmacokinetics of risperidone or the active antipsychotic fraction. Cimetidine and ranitidine increased the bioavailability of risperidone, but only marginally increased the plasma concentration of the active antipsychotic fraction.

    Chronic administration of clozapine with risperidone may decrease the clearance of risperidone.

    Carbamazepine and Other Enzyme Inducers

    In a drug interaction study in schizophrenic patients, 11 subjects received risperidone titrated to 6 mg/day for 3 weeks, followed by concurrent administration of carbamazepine for an additional 3 weeks. During co-administration, the plasma concentrations of risperidone and its pharmacologically active metabolite, 9-hydroxyrisperidone, were decreased by about 50%. Plasma concentrations of carbamazepine did not appear to be affected. The dose of risperidone may need to be titrated accordingly for patients receiving carbamazepine, particularly during initiation or discontinuation of carbamazepine therapy. Co-administration of other known enzyme inducers (e.g., phenytoin, rifampin, and phenobarbital) with risperidone may cause similar decreases in the combined plasma concentrations of risperidone and 9-hydroxyrisperidone, which could lead to decreased efficacy of risperidone treatment.

    Fluoxetine and Paroxetine

    Fluoxetine (20 mg QD) and paroxetine (20 mg QD) have been shown to increase the plasma concentration of risperidone 2.5-2.8 fold and 3-9 fold respectively. Fluoxetine did not affect the plasma concentration of 9-hydroxyrisperidone. Paroxetine lowered the concentration of 9-hydroxyrisperidone an average of 13%. When either concomitant fluoxetine or paroxetine is initiated or discontinued, the physician should re-evaluate the dosing of RISPERDAL®. The effects of discontinuation of concomitant fluoxetine or paroxetine therapy on the pharmacokinetics of risperidone and 9-hydroxyrisperidone have not been studied.

    Lithium

    Repeated oral doses of risperidone (3 mg BID) did not affect the exposure (AUC) or peak plasma concentrations (C max ) of lithium (n=13).

    Valproate

    Repeated oral doses of risperidone (4 mg QD) did not affect the pre-dose or average plasma concentrations and exposure (AUC) of valproate (1000 mg/day in three divided doses) compared to placebo (n=21). However, there was a 20% increase in valproate peak plasma concentration (C max ) after concomitant administration of risperidone.

    Digoxin

    RISPERDAL® (0.25 mg BID) did not show a clinically relevant effect on the pharmacokinetics of digoxin.

    Drugs That Inhibit CYP 2D6 and Other CYP Isozymes

    Risperidone is metabolized to 9-hydroxyrisperidone by CYP 2D6, an enzyme that is polymorphic in the population and that can be inhibited by a variety of psychotropic and other drugs (see CLINICAL PHARMACOLOGY ). Drug interactions that reduce the metabolism of risperidone to 9-hydroxyrisperidone would increase the plasma concentrations of risperidone and lower the concentrations of 9-hydroxyrisperidone. Analysis of clinical studies involving a modest number of poor metabolizers (n[cong ]70) does not suggest that poor and extensive metabolizers have different rates of adverse effects. No comparison of effectiveness in the two groups has been made.

    In vitro studies showed that drugs metabolized by other CYP isozymes, including 1A1, 1A2, 2C9, 2C19, and 3A4, are only weak inhibitors of risperidone metabolism.

    There were no significant interactions between risperidone and erythromycin (see CLINICAL PHARMACOLOGY ).

    Drugs Metabolized by CYP 2D6

    In vitro studies indicate that risperidone is a relatively weak inhibitor of CYP 2D6. Therefore, RISPERDAL® is not expected to substantially inhibit the clearance of drugs that are metabolized by this enzymatic pathway. In drug interaction studies, risperidone did not significantly affect the pharmacokinetics of donepezil and galantamine, which are metabolized by CYP 2D6.

    Carcinogenesis, Mutagenesis, Impairment of Fertility

    Carcinogenesis

    Carcinogenicity studies were conducted in Swiss albino mice and Wistar rats. Risperidone was administered in the diet at doses of 0.63, 2.5, and 10 mg/kg for 18 months to mice and for 25 months to rats. These doses are equivalent to 2.4, 9.4, and 37.5 times the maximum recommended human dose (MRHD) (16 mg/day) on a mg/kg basis or 0.2, 0.75, and 3 times the MRHD (mice) or 0.4, 1.5, and 6 times the MRHD (rats) on a mg/m 2 basis. A maximum tolerated dose was not achieved in male mice. There were statistically significant increases in pituitary gland adenomas, endocrine pancreas adenomas, and mammary gland adenocarcinomas. The following table summarizes the multiples of the human dose on a mg/m 2 (mg/kg) basis at which these tumors occurred.

    Multiples of Maximum Human Dose
    in mg/m 2 (mg/kg)
    Tumor Type
      
    Species
      
    Sex
      
         Lowest
         Effect
         Level
       Highest
       No-Effect
       Level
    Pituitary adenomas
    mouse female      0.75 (9.4)    0.2 (2.4)
    Endocrine pancreas
    adenomas
    rat male      1.5 (9.4)    0.4 (2.4)
    Mammary gland
    adenocarcinomas
    mouse female      0.2 (2.4)    none
    rat female      0.4 (2.4)    none
    rat male      6.0 (37.5)    1.5 (9.4)
    Mammary gland
    neoplasms, Total
    rat male      1.5 (9.4)    0.4 (2.4)

    Antipsychotic drugs have been shown to chronically elevate prolactin levels in rodents. Serum prolactin levels were not measured during the risperidone carcinogenicity studies; however, measurements during subchronic toxicity studies showed that risperidone elevated serum prolactin levels 5-6 fold in mice and rats at the same doses used in the carcinogenicity studies. An increase in mammary, pituitary, and endocrine pancreas neoplasms has been found in rodents after chronic administration of other antipsychotic drugs and is considered to be prolactin-mediated. The relevance for human risk of the findings of prolactin-mediated endocrine tumors in rodents is unknown (see PRECAUTIONS , General -- Hyperprolactinemia

    Mutagenesis

    No evidence of mutagenic potential for risperidone was found in the Ames reverse mutation test, mouse lymphoma assay, in vitro rat hepatocyte DNA-repair assay, in vivo micronucleus test in mice, the sex-linked recessive lethal test in Drosophila, or the chromosomal aberration test in human lymphocytes or Chinese hamster cells.

    Impairment of Fertility

    Risperidone (0.16 to 5 mg/kg) was shown to impair mating, but not fertility, in Wistar rats in three reproductive studies (two Segment I and a multigenerational study) at doses 0.1 to 3 times the maximum recommended human dose (MRHD) on a mg/m 2 basis. The effect appeared to be in females, since impaired mating behavior was not noted in the Segment I study in which males only were treated. In a subchronic study in Beagle dogs in which risperidone was administered at doses of 0.31 to 5 mg/kg, sperm motility and concentration were decreased at doses 0.6 to 10 times the MRHD on a mg/m 2 basis. Dose-related decreases were also noted in serum testosterone at the same doses. Serum testosterone and sperm parameters partially recovered, but remained decreased after treatment was discontinued. No no-effect doses were noted in either rat or dog.

    Pregnancy

    Pregnancy Category C

    The teratogenic potential of risperidone was studied in three Segment II studies in Sprague-Dawley and Wistar rats (0.63-10 mg/kg or 0.4 to 6 times the maximum recommended human dose [MRHD] on a mg/m 2 basis) and in one Segment II study in New Zealand rabbits (0.31-5 mg/kg or 0.4 to 6 times the MRHD on a mg/m 2 basis). The incidence of malformations was not increased compared to control in offspring of rats or rabbits given 0.4 to 6 times the MRHD on a mg/m 2 basis. In three reproductive studies in rats (two Segment III and a multigenerational study), there was an increase in pup deaths during the first 4 days of lactation at doses of 0.16-5 mg/kg or 0.1 to 3 times the MRHD on a mg/m 2 basis. It is not known whether these deaths were due to a direct effect on the fetuses or pups or to effects on the dams.

    There was no no-effect dose for increased rat pup mortality. In one Segment III study, there was an increase in stillborn rat pups at a dose of 2.5 mg/kg or 1.5 times the MRHD on a mg/m 2 basis. In a cross-fostering study in Wistar rats, toxic effects on the fetus or pups, as evidenced by a decrease in the number of live pups and an increase in the number of dead pups at birth (Day 0), and a decrease in birth weight in pups of drug-treated dams were observed. In addition, there was an increase in deaths by Day 1 among pups of drug-treated dams, regardless of whether or not the pups were cross-fostered. Risperidone also appeared to impair maternal behavior in that pup body weight gain and survival (from Day 1 to 4 of lactation) were reduced in pups born to control but reared by drug-treated dams. These effects were all noted at the one dose of risperidone tested, i.e., 5 mg/kg or 3 times the MRHD on a mg/m 2 basis.

    Placental transfer of risperidone occurs in rat pups. There are no adequate and well-controlled studies in pregnant women. However, there was one report of a case of agenesis of the corpus callosum in an infant exposed to risperidone in utero . The causal relationship to RISPERDAL® therapy is unknown.

    RISPERDAL® should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

    Labor and Delivery

    The effect of RISPERDAL® on labor and delivery in humans is unknown.

    Nursing Mothers

    In animal studies, risperidone and 9-hydroxyrisperidone are excreted in milk. Risperidone and 9-hydroxyrisperidone are also excreted in human breast milk. Therefore, women receiving risperidone should not breast-feed.

    Pediatric Use

    Safety and effectiveness in children have not been established.

    Geriatric Use

    Clinical studies of RISPERDAL® in the treatment of schizophrenia did not include sufficient numbers of patients aged 65 and over to determine whether or not they respond differently than younger patients. Other reported clinical experience has not identified differences in responses between elderly and younger patients. In general, a lower starting dose is recommended for an elderly patient, reflecting a decreased pharmacokinetic clearance in the elderly, as well as a greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy (see CLINICAL PHARMACOLOGY and DOSAGE AND ADMINISTRATION ). While elderly patients exhibit a greater tendency to orthostatic hypotension, its risk in the elderly may be minimized by limiting the initial dose to 0.5 mg BID followed by careful titration (see PRECAUTIONS ). Monitoring of orthostatic vital signs should be considered in patients for whom this is of concern.

    This drug is substantially excreted by the kidneys, and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function (see DOSAGE AND ADMINISTRATION ).

    Concomitant use with Furosemide in Elderly Patients with Dementia-Related Psychosis

    In placebo-controlled trials in elderly patients with dementia-related psychosis, a higher incidence of mortality was observed in patients treated with furosemide plus risperidone (7.3%; mean age 89 years, range 75-97) when compared to patients treated with risperidone alone (3.1%; mean age 84 years, range 70-96) or furosemide alone (4.1%; mean age 80 years, range 67-90). The increase in mortality in patients treated with furosemide plus risperidone was observed in two of the four clinical trials.

    No pathophysiological mechanism has been identified to explain this finding, and no consistent pattern for cause of death observed. Nevertheless, caution should be exercised and the risks and benefits of this combination should be considered prior to the decision to use. There was no increased incidence of mortality among patients taking other diuretics as concomitant medication with risperidone. Irrespective of treatment, dehydration was an overall risk factor for mortality and should therefore be carefully avoided in elderly patients with dementia-related psychosis.RISPERDAL® is not approved for the treatment of patients with dementia-related psychosis. (See also Boxed WARNING, WARNINGS: Increased Mortality in Elderly Patients with Dementia-Related Psychosis.)

    ADVERSE REACTIONS

    The following findings are based on the short-term, placebo-controlled, North American, premarketing trials for schizophrenia and acute bipolar mania. In patients with Bipolar I Disorder, treatment-emergent adverse events are presented separately for risperidone as monotherapy and as adjunctive therapy to mood stabilizers.

    Certain portions of the discussion below relating to objective or numeric safety parameters, namely dose-dependent adverse events, vital sign changes, weight gain, laboratory changes, and ECG changes are derived from studies in patients with schizophrenia. However, this information is also generally applicable to bipolar mania.

    Associated With Discontinuation of Treatment

    Schizophrenia

    Approximately 9% (244/2607) of RISPERDAL®(risperidone)-treated patients in Phase 2 and 3 studies discontinued treatment due to an adverse event, compared with about 7% on placebo and 10% on active control drugs. The more common events ( >/=0.3%) associated with discontinuation and considered to be possibly or probably drug-related included:

    Adverse Event RISPERDAL® Placebo
    Extrapyramidal symptoms
    2.1% 0%
    Dizziness
    0.7% 0%
    Hyperkinesia
    0.6% 0%
    Somnolence
    0.5% 0%
    Nausea
    0.3% 0%

    Suicide attempt was associated with discontinuation in 1.2% of RISPERDAL®-treated patients compared to 0.6% of placebo patients, but, given the almost 40-fold greater exposure time in RISPERDAL® compared to placebo patients, it is unlikely that suicide attempt is a RISPERDAL®-related adverse event (see PRECAUTIONS ). Discontinuation for extrapyramidal symptoms was 0% in placebo patients, but 3.8% in active-control patients in the Phase 2 and 3 trials.

    Bipolar Mania

    In the US placebo-controlled trial with risperidone as monotherapy, approximately 8% (10/134) of RISPERDAL®-treated patients discontinued treatment due to an adverse event, compared with approximately 6% (7/125) of placebo-treated patients. The adverse events associated with discontinuation and considered to be possibly, probably, or very likely drug-related included paroniria, somnolence, dizziness, extrapyramidal disorder, and muscle contractionsinvoluntary. Each of these events occurred in one RISPERDAL®-treated patient (0.7%) and in no placebo-treated patients (0%).

    In the US placebo-controlled trial with risperidone as adjunctive therapy to mood stabilizers, there was no overall difference in the incidence of discontinuation due to adverse events (4% for RISPERDAL® vs. 4% for placebo).

    Incidence in Controlled Trials

    Commonly Observed Adverse Events in Controlled Clinical Trials

    Schizophrenia

    In two 6- to 8-week placebo-controlled trials, spontaneously-reported, treatment-emergent adverse events with an incidence of 5% or greater in at least one of the RISPERDAL® groups and at least twice that of placebo were anxiety, somnolence, extrapyramidal symptoms, dizziness, constipation, nausea, dyspepsia, rhinitis, rash, and tachycardia.

    Adverse events were also elicited in one of these two trials (i.e., in the fixed-dose trial comparing RISPERDAL® at doses of 2, 6, 10, and 16 mg/day with placebo) utilizing a checklist for detecting adverse events, a method that is more sensitive than spontaneous reporting. By this method, the following additional common and drug-related adverse events occurred at an incidence of at least 5% and twice the rate of placebo: increased dream activity, increased duration of sleep, accommodation disturbances, reduced salivation, micturition disturbances, diarrhea, weight gain, menorrhagia, diminished sexual desire, erectile dysfunction, ejaculatory dysfunction, and orgastic dysfunction.

    Bipolar Mania

    In the US placebo-controlled trial with risperidone as monotherapy, the most commonly observed adverse events associated with the use of RISPERDAL® (incidence of 5% or greater and at least twice that of placebo) were somnolence, dystonia, akathisia, dyspepsia, nausea, parkinsonism, vision abnormal, and saliva increased. In the US placebo-controlled trial with risperidone as adjunctive therapy to mood stabilizers, the most commonly observed adverse events associated with the use of RISPERDAL® were somnolence, dizziness, parkinsonism, saliva increased, akathisia, abdominal pain, and urinary incontinence.

    Adverse Events Occurring at an Incidence of 1% or More Among RISPERDAL®-Treated Patients - Schizophrenia

    The table that follows enumerates adverse events that occurred at an incidence of 1% or more, and were more frequent among RISPERDAL®-treated patients treated at doses of </= 10 mg/day than among placebo-treated patients in the pooled results of two 6- to 8-week controlled trials. Patients received RISPERDAL® doses of 2, 6, 10, or 16 mg/day in the dose comparison trial, or up to a maximum dose of 10 mg/day in the titration study. This table shows the percentage of patients in each dose group (</= 10 mg/day or 16 mg/day) who spontaneously reported at least one episode of an event at some time during their treatment. Patients given doses of 2, 6, or 10 mg did not differ materially in these rates. Reported adverse events were classified using the World Health Organization preferred terms.

    The prescriber should be aware that these figures cannot be used to predict the incidence of side effects in the course of usual medical practice where patient characteristics and other factors differ from those which prevailed in this clinical trial. Similarly, the cited frequencies cannot be compared with figures obtained from other clinical investigations involving different treatments, uses, and investigators. The cited figures, however, do provide the prescribing physician with some basis for estimating the relative contribution of drug and non-drug factors to the side effect incidence rate in the population studied.

    Table 1.   Incidence of Treatment-Emergent Adverse
    Events in 6- to 8-Week Controlled Clinical Trials 1
    Body System/
    RISPERDAL ®     
       Preferred Term
    </=10 mg/day
    (N=324)
    16 mg/day
    (N=77)
    Placebo
    (N=142)
    Psychiatric
      Insomnia
    26% 23% 19%
      Agitation
    22% 26% 20%
      Anxiety
    12% 20% 9%
      Somnolence
    3% 8% 1%
      Aggressive
       reaction
    1% 3% 1%
    Central & peripheral nervous system
      Extrapyramidal
       symptoms 2
    17% 34% 16%
      Headache
    14% 12% 12%
      Dizziness
    4% 7% 1%
    Gastrointestinal
      Constipation
    7% 13% 3%
      Nausea
    6% 4% 3%
      Dyspepsia
    5% 10% 4%
      Vomiting
    5% 7% 4%
      Abdominal pain
    4% 1% 0%
      Saliva increased
    2% 0% 1%
      Toothache
    2% 0% 0%
    Respiratory system
      Rhinitis
    10% 8% 4%
      Coughing
    3% 3% 1%
      Sinusitis
    2% 1% 1%
      Pharyngitis
    2% 3% 0%
      Dyspnea
    1% 0% 0%
    Body as a whole-general
      Back pain
    2% 0% 1%
      Chest pain
    2% 3% 1%
      Fever
    2% 3% 0%
    Dermatological
      Rash
    2% 5% 1%
      Dry skin
    2% 4% 0%
      Seborrhea
    1% 0% 0%
    Infections
      Upper
       respiratory
    3% 3% 1%
    Visual
      Abnormal vision
    2% 1% 1%
    Musculo-Skeletal
      Arthralgia
    2% 3% 0%
    Cardiovascular
      Tachycardia
    3% 5% 0%
    1 Events reported by at least 1% of patients treated with RISPERDAL ® </= 10 mg/day are included, and are rounded to the nearest %. Comparative rates for RISPERDAL ® 16 mg/day and placebo are provided as well. Events for which the RISPERDAL ® incidence (in both dose groups) was equal to or less than placebo are not listed in the table, but included the following: nervousness, injury, and fungal infection.
    2 Includes tremor, dystonia, hypokinesia, hypertonia, hyperkinesia, oculogyric crisis, ataxia, abnormal gait, involuntary muscle contractions, hyporeflexia, akathisia, and extrapyramidal disorders. Although the incidence of `extrapyramidal symptoms' does not appear to differ for the `10 mg/day' group and placebo, the data for individual dose groups in fixed dose trials do suggest a dose/response relationship (see ADVERSE REACTIONS - Dose Dependency of Adverse Events ).

    Adverse Events Occurring at an Incidence of 2% or More Among RISPERDAL®-Treated Patients - Bipolar Mania

    Tables 2 and 3 display adverse events that occurred at an incidence of 2% or more, and were more frequent among patients treated with flexible doses of RISPERDAL® (1-6 mg daily as monotherapy and as adjunctive therapy to mood stabilizers, respectively) than among patients treated with placebo. Reported adverse events were classified using the World Health Organization preferred terms.

    Table 2.   Incidence of Treatment-Emergent Adverse
    Events in a 3-Week, Placebo-Controlled Trial -
    Monotherapy in Bipolar Mania 1
    Body System/
       Preferred Term
    RISPERDAL ®
    (N=134)
    Placebo
    (N=125)
    Central & peripheral nervous system
      Dystonia
    18% 6%
      Akathisia
    16% 6%
      Dizziness
    11% 9%
      Parkinsonism
    6% 3%
      Hypoaesthesia
    2% 1%
    Psychiatric
      Somnolence
    28% 7%
      Agitation
    8% 6%
      Manic reaction
    8% 6%
      Anxiety
    4% 2%
      Concentration impaired
    2% 1%
    Gastrointestinal system
      Dyspepsia
    11% 6%
      Nausea
    11% 2%
      Saliva increased
    5% 1%
      Mouth dry
    3% 2%
    Body as a whole - general
      Pain
    5% 3%
      Fatigue
    4% 2%
      Injury
    2% 0%
    Respiratory system
      Sinusitis
    4% 1%
      Rhinitis
    3% 2%
      Coughing
    2% 2%
    Skin and appendages
      Acne
    2% 0%
      Pruritus
    2% 1%
    Musculo-Skeletal
      Myalgia
    5% 2%
      Skeletal pain
    2% 1%
    Metabolic and nutritional
      Weight increase
    2% 0%
    Vision disorders
      Vision abnormal
    6% 2%
    Cardiovascular, general
      Hypertension
    3% 1%
      Hypotension
    2% 0%
    Heart rate and rhythm
      Tachycardia
    3% 2%
    1 Events reported by at least 2% of patients treated with RISPERDAL ® are included and are rounded to the nearest %. Events reported by at least 2% of patients treated with RISPERDAL ® that were less than the incidence reported by patients treated with placebo are not listed in the table, but included the following: headache, tremor, insomnia, constipation, back pain, upper respiratory tract infection, pharyngitis, and arthralgia.

    Table 3.   Incidence of Treatment-Emergent Adverse
    Events in a 3-Week, Placebo-Controlled Trial -
    Adjunctive Therapy in Bipolar Mania 1
    Body System/
       Preferred Term
    RISPERDAL ®
    + Mood Stabilizer
    (N=152)
    Placebo
    + Mood Stabilizer
    (N=51)
    Gastrointestinal system
      Saliva increased
    10% 0%
      Diarrhea
    8% 4%
      Abdominal pain
    6% 0%
      Constipation
    6% 4%
      Mouth dry
    6% 4%
      Tooth ache
    4% 0%
      Tooth disorder
    4% 0%
    Central & peripheral nervous system
      Dizziness
    14% 2%
      Parkinsonism
    14% 4%
      Akathisia
    8% 0%
      Dystonia
    6% 4%
    Psychiatric
      Somnolence
    25% 12%
      Anxiety
    6% 4%
      Confusion
    4% 0%
    Respiratory system
      Rhinitis
    8% 4%
      Pharyngitis
    6% 4%
      Coughing
    4% 0%
    Body as a whole - general
      Asthenia
    4% 2%
    Urinary system
      Urinary
       incontinence
    6% 2%
    Heart rate and rhythm
      Tachycardia
    4% 2%
    Metabolic and nutritional
      Weight increase
    4% 2%
    Skin and appendages
      Rash
    4% 2%
    1 Events reported by at least 2% of patients treated with RISPERDAL ® are included and are rounded to the nearest %. Events reported by at least 2% of patients treated with RISPERDAL ® that were less than the incidence reported by patients treated with placebo are not listed in the table, but included the following: dyspepsia, nausea, vomiting, headache, tremor, insomnia, chest pain, fatigue, pain, skeletal pain, hypertension, and vision abnormal.

    Dose Dependency of Adverse Events

    Extrapyramidal Symptoms

    Data from two fixed-dose trials provided evidence of dose-relatedness for extrapyramidal symptoms associated with risperidone treatment.

    Two methods were used to measure extrapyramidal symptoms (EPS) in an 8-week trial comparing 4 fixed doses of risperidone (2, 6, 10, and 16 mg/day), including (1) a parkinsonism score (mean change from baseline) from the Extrapyramidal Symptom Rating Scale, and (2) incidence of spontaneous complaints of EPS:

    Dose Groups Placebo Ris 2 Ris 6 Ris 10 Ris 16
    Parkinsonism 1.2 0.9 1.8 2.4 2.6
    EPS Incidence 13% 13% 16% 20% 31%

    Similar methods were used to measure extrapyramidal symptoms (EPS) in an 8-week trial comparing 5 fixed doses of risperidone (1, 4, 8, 12, and 16 mg/day):

    Dose Groups Ris 1 Ris 4 Ris 8 Ris 12 Ris 16
    Parkinsonism 0.6 1.7 2.4 2.9 4.1
    EPS Incidence 7% 12% 18% 18% 21%

    Other Adverse Events

    Adverse event data elicited by a checklist for side effects from a large study comparing 5 fixed doses of RISPERDAL® (1, 4, 8, 12, and 16 mg/day) were explored for dose-relatedness of adverse events. A Cochran-Armitage Test for trend in these data revealed a positive trend (p<0.05) for the following adverse events: sleepiness, increased duration of sleep, accommodation disturbances, orthostatic dizziness, palpitations, weight gain, erectile dysfunction, ejaculatory dysfunction, orgastic dysfunction, asthenia/lassitude/increased fatigability, and increased pigmentation.

    Vital Sign Changes

    RISPERDAL® is associated with orthostatic hypotension and tachycardia (see PRECAUTIONS ).

    Weight Changes

    The proportions of RISPERDAL® and placebo-treated patients meeting a weight gain criterion of >/=7% of body weight were compared in a pool of 6- to 8-week, placebo-controlled trials, revealing a statistically significantly greater incidence of weight gain for RISPERDAL® (18%) compared to placebo (9%).

    Laboratory Changes

    A between-group comparison for 6- to 8-week placebo-controlled trials revealed no statistically significant RISPERDAL®/placebo differences in the proportions of patients experiencing potentially important changes in routine serum chemistry, hematology, or urinalysis parameters. Similarly, there were no RISPERDAL®/placebo differences in the incidence of discontinuations for changes in serum chemistry, hematology, or urinalysis. However, RISPERDAL® administration was associated with increases in serum prolactin (see PRECAUTIONS ).

    ECG Changes

    Between-group comparisons for pooled placebo-controlled trials revealed no statistically significant differences between risperidone and placebo in mean changes from baseline in ECG parameters, including QT, QTc, and PR intervals, and heart rate. When all RISPERDAL® doses were pooled from randomized controlled trials in several indications, there was a mean increase in heart rate of 1 beat per minute compared to no change for placebo patients. In short-term schizophrenia trials, higher doses of risperidone (8-16 mg/day) were associated with a higher mean increase in heart rate compared to placebo (4-6 beats per minute).

    Other Events Observed During the Premarketing Evaluation of RISPERDAL®

    During its premarketing assessment, multiple doses of RISPERDAL® were administered to 2607 patients in Phase 2 and 3 studies. The conditions and duration of exposure to RISPERDAL® varied greatly, and included (in overlapping categories) open-label and double-blind studies, uncontrolled and controlled studies, inpatient and outpatient studies, fixed-dose and titration studies, and short-term or longer-term exposure. In most studies, untoward events associated with this exposure were obtained by spontaneous report and recorded by clinical investigators using terminology of their own choosing. Consequently, it is not possible to provide a meaningful estimate of the proportion of individuals experiencing adverse events without first grouping similar types of untoward events into a smaller number of standardized event categories. In two large studies, adverse events were also elicited utilizing the UKU (direct questioning) side effect rating scale, and these events were not further categorized using standard terminology. (Note: These events are marked with an asterisk in the listings that follow.)

    In the listings that follow, spontaneously reported adverse events were classified using World Health Organization (WHO) preferred terms. The frequencies presented, therefore, represent the proportion of the 2607 patients exposed to multiple doses of RISPERDAL® who experienced an event of the type cited on at least one occasion while receiving RISPERDAL®. All reported events are included, except those already listed in Table 1, those events for which a drug cause was remote, and those event terms which were so general as to be uninformative. It is important to emphasize that, although the events reported occurred during treatment with RISPERDAL®, they were not necessarily caused by it.

    Events are further categorized by body system and listed in order of decreasing frequency according to the following definitions: frequent adverse events are those occurring in at least 1/100 patients (only those not already listed in the tabulated results from placebo-controlled trials appear in this listing); infrequent adverse events are those occurring in 1/100 to 1/1000 patients; rare events are those occurring in fewer than 1/1000 patients.

    Psychiatric Disorders

    Frequent : increased dream activity * , diminished sexual desire * , nervousness. Infrequent : impaired concentration, depression, apathy, catatonic reaction, euphoria, increased libido, amnesia. Rare : emotional lability, nightmares, delirium, withdrawal syndrome, yawning.

    Central and Peripheral Nervous System Disorders

    Frequent : increased sleep duration * . Infrequent : dysarthria, vertigo, stupor, paraesthesia, confusion. Rare : aphasia, cholinergic syndrome, hypoesthesia, tongue paralysis, leg cramps, torticollis, hypotonia, coma, migraine, hyperreflexia, choreoathetosis.

    Gastrointestinal Disorders

    Frequent : anorexia, reduced salivation * . Infrequent : flatulence, diarrhea, increased appetite, stomatitis, melena, dysphagia, hemorrhoids, gastritis. Rare : fecal incontinence, eructation, gastroesophageal reflux, gastroenteritis, esophagitis, tongue discoloration, cholelithiasis, tongue edema, diverticulitis, gingivitis, discolored feces, GI hemorrhage, hematemesis.

    Body as a Whole/General Disorders

    Frequent : fatigue. Infrequent : edema, rigors, malaise, influenza-like symptoms. Rare : pallor, enlarged abdomen, allergic reaction, ascites, sarcoidosis, flushing.

    Respiratory System Disorders

    Infrequent : hyperventilation, bronchospasm, pneumonia, stridor. Rare : asthma, increased sputum, aspiration.

    Skin and Appendage Disorders

    Frequent : increased pigmentation * , photosensitivity * . Infrequent : increased sweating, acne, decreased sweating, alopecia, hyperkeratosis, pruritus, skin exfoliation. Rare : bullous eruption, skin ulceration, aggravated psoriasis, furunculosis, verruca, dermatitis lichenoid, hypertrichosis, genital pruritus, urticaria.

    Cardiovascular Disorders

    Infrequent : palpitation, hypertension, hypotension, AV block, myocardial infarction. Rare : ventricular tachycardia, angina pectoris, premature atrial contractions, T wave inversions, ventricular extrasystoles, ST depression,myocarditis.

    Vision Disorders

    Infrequent : abnormal accommodation, xerophthalmia. Rare : diplopia, eye pain, blepharitis, photopsia, photophobia, abnormal lacrimation.

    Metabolic and Nutritional Disorders

    Infrequent : hyponatremia, weight increase, creatine phosphokinase increase, thirst, weight decrease, diabetes mellitus. Rare : decreased serum iron, cachexia, dehydration, hypokalemia, hypoproteinemia, hyperphosphatemia, hypertriglyceridemia, hyperuricemia, hypoglycemia.

    Urinary System Disorders

    Frequent : polyuria/polydipsia * . Infrequent : urinary incontinence, hematuria, dysuria. Rare : urinary retention, cystitis, renal insufficiency.

    Musculo-Skeletal System Disorders

    Infrequent : myalgia. Rare : arthrosis, synostosis, bursitis, arthritis, skeletal pain.

    Reproductive Disorders, Female

    Frequent : menorrhagia * , orgastic dysfunction * , dry vagina * . Infrequent : nonpuerperal lactation, amenorrhea, female breast pain, leukorrhea, mastitis, dysmenorrhea, female perineal pain, intermenstrual bleeding, vaginal hemorrhage.

    Liver and Biliary System Disorders

    Infrequent : increased SGOT, increased SGPT. Rare : hepatic failure, cholestatic hepatitis, cholecystitis, cholelithiasis, hepatitis, hepatocellular damage.

    Platelet, Bleeding, and Clotting Disorders

    Infrequent : epistaxis, purpura. Rare : hemorrhage, superficial phlebitis, thrombophlebitis, thrombocytopenia.

    Hearing and Vestibular Disorders

    Rare : tinnitus, hyperacusis, decreased hearing.

    Red Blood Cell Disorders

    Infrequent : anemia, hypochromic anemia. Rare : normocytic anemia.

    Reproductive Disorders, Male

    Frequent : erectile dysfunction * . Infrequent : ejaculation failure.

    White Cell and Resistance Disorders

    Rare : leukocytosis, lymphadenopathy, leucopenia, Pelger-Huet anomaly.

    Endocrine Disorders

    Rare : gynecomastia, male breast pain, antidiuretic hormone disorder.

    Special Senses

    Rare : bitter taste.


    * Incidence based on elicited reports.

    Postintroduction Reports

    Adverse events reported since market introduction which were temporally (but not necessarily causally) related to RISPERDAL® therapy, include the following: anaphylactic reaction, angioedema, apnea, atrial fibrillation, cerebrovascular disorder, including cerebrovascular accident, hyperglycemia, diabetes mellitus aggravated, including diabetic ketoacidosis, intestinal obstruction, jaundice, mania, pancreatitis, Parkinson's disease aggravated, pulmonary embolism. There have been rare reports of sudden death and/or cardiopulmonary arrest in patients receiving RISPERDAL®. A causal relationship with RISPERDAL® has not been established. It is important to note that sudden and unexpected death may occur in psychotic patients whether they remain untreated or whether they are treated with other antipsychotic drugs.

    DRUG ABUSE AND DEPENDENCE

    Controlled Substance Class

    RISPERDAL® (risperidone) is not a controlled substance.

    Physical and Psychological Dependence

    RISPERDAL® has not been systematically studied in animals or humans for its potential for abuse, tolerance, or physical dependence. While the clinical trials did not reveal any tendency for any drug-seeking behavior, these observations were not systematic and it is not possible to predict on the basis of this limited experience the extent to which a CNS-active drug will be misused, diverted, and/or abused once marketed. Consequently, patients should be evaluated carefully for a history of drug abuse, and such patients should be observed closely for signs of RISPERDAL® misuse or abuse (e.g., development of tolerance, increases in dose, drug-seeking behavior).

    OVERDOSAGE

    Human Experience

    Premarketing experience included eight reports of acute RISPERDAL® (risperidone) overdosage with estimated doses ranging from 20 to 300 mg and no fatalities. In general, reported signs and symptoms were those resulting from an exaggeration of the drug's known pharmacological effects, i.e., drowsiness and sedation, tachycardia and hypotension, and extrapyramidal symptoms. One case, involving an estimated overdose of 240 mg, was associated with hyponatremia, hypokalemia, prolonged QT, and widened QRS. Another case, involving an estimated overdose of 36 mg, was associated with a seizure.

    Postmarketing experience includes reports of acute RISPERDAL® overdosage, with estimated doses of up to 360 mg. In general, the most frequently reported signs and symptoms are those resulting from an exaggeration of the drug's known pharmacological effects, i.e., drowsiness, sedation, tachycardia, hypotension, and extrapyramidal symptoms. Other adverse events reported since market introduction which were temporally (but not necessarily causally) related to RISPERDAL® overdose, include torsade de pointes, prolonged QT interval, convulsions, cardiopulmonary arrest, and rare fatality associated with multiple drug overdose.

    Management of Overdosage

    In case of acute overdosage, establish and maintain an airway and ensure adequate oxygenation and ventilation. Gastric lavage (after intubation, if patient is unconscious) and administration of activated charcoal together with a laxative should be considered. Because of the rapid disintegration of RISPERDAL® M-TAB® Orally Disintegrating Tablets, pill fragments may not appear in gastric contents obtained with lavage.

    The possibility of obtundation, seizures, or dystonic reaction of the head and neck following overdose may create a risk of aspiration with induced emesis. Cardiovascular monitoring should commence immediately and should include continuous electrocardiographic monitoring to detect possible arrhythmias. If antiarrhythmic therapy is administered, disopyramide, and quinidine carry a theoretical hazard of QT-prolonging effects that might be additive to those of risperidone. Similarly, it is reasonable to expect that the alpha-blocking properties of bretylium might be additive to those of risperidone, resulting in problematic hypotension.

    There is no specific antidote to RISPERDAL®. Therefore, appropriate supportive measures should be instituted. The possibility of multiple drug involvement should be considered. Hypotension and circulatory collapse should be treated with appropriate measures, such as intravenous fluids and/or sympathomimetic agents (epinephrine and dopamine should not be used, since beta stimulation may worsen hypotension in the setting of risperidone-induced alpha blockade). In cases of severe extrapyramidal symptoms, anticholinergic medication should be administered. Close medical supervision and monitoring should continue until the patient recovers.

    DOSAGE AND ADMINISTRATION

    Schizophrenia

    Usual Initial Dose

    RISPERDAL® (risperidone) can be administered on either a BID or a QD schedule. In early clinical trials, RISPERDAL® was generally administered at 1 mg BID initially, with increases in increments of 1 mg BID on the second and third day, as tolerated, to a target dose of 3 mg BID by the third day. Subsequent controlled trials have indicated that total daily risperidone doses of up to 8 mg on a QD regimen are also safe and effective. However, regardless of which regimen is employed, in some patients a slower titration may be medically appropriate. Further dosage adjustments, if indicated, should generally occur at intervals of not less than 1 week, since steady state for the active metabolite would not be achieved for approximately 1 week in the typical patient. When dosage adjustments are necessary, small dose increments/decrements of 1-2 mg are recommended.

    Efficacy in schizophrenia was demonstrated in a dose range of 4 to 16 mg/day in the clinical trials supporting effectiveness of RISPERDAL®; however, maximal effect was generally seen in a range of 4 to 8 mg/day. Doses above 6 mg/day for BID dosing were not demonstrated to be more efficacious than lower doses, were associated with more extrapyramidal symptoms and other adverse effects, and are not generally recommended. In a single study supporting QD dosing, the efficacy results were generally stronger for 8 mg than for 4 mg. The safety of doses above 16 mg/day has not been evaluated in clinical trials.

    Maintenance Therapy

    While there is no body of evidence available to answer the question of how long the schizophrenic patient treated with RISPERDAL® should remain on it, the effectiveness of RISPERDAL® 2 mg/day to 8 mg/day at delaying relapse was demonstrated in a controlled trial in patients who had been clinically stable for at least 4 weeks and were then followed for a period of 1 to 2 years. In this trial, RISPERDAL® was administered on a QD schedule, at 1 mg QD initially, with increases to 2 mg QD on the second day, and to a target dose of 4 mg QD on the third day (see CLINICAL PHARMACOLOGY - Clinical Trials ). Nevertheless, patients should be periodically reassessed to determine the need for maintenance treatment with an appropriate dose.

    Reinitiation of Treatment in Patients Previously Discontinued

    Although there are no data to specifically address reinitiation of treatment, it is recommended that when restarting patients who have had an interval off RISPERDAL®, the initial titration schedule should be followed.

    Switching From Other Antipsychotics

    There are no systematically collected data to specifically address switching schizophrenic patients from other antipsychotics to RISPERDAL®, or concerning concomitant administration with other antipsychotics. While immediate discontinuation of the previous antipsychotic treatment may be acceptable for some schizophrenic patients, more gradual discontinuation may be most appropriate for others. In all cases, the period of overlapping antipsychotic administration should be minimized. When switching schizophrenic patients from depot antipsychotics, if medically appropriate, initiate RISPERDAL® therapy in place of the next scheduled injection. The need for continuing existing EPS medication should be re-evaluated periodically.

    Bipolar Mania

    Usual Dose

    Risperidone should be administered on a once daily schedule, starting with 2 mg to 3 mg per day. Dosage adjustments, if indicated, should occur at intervals of not less than 24 hours and in dosage increments/decrements of 1 mg per day, as studied in the short-term, placebo-controlled trials. In these trials, short-term (3 week) anti-manic efficacy was demonstrated in a flexible dosage range of 1-6 mg per day (see CLINICAL PHARMACOLOGY - Clinical Trials ). RISPERDAL® doses higher than 6 mg per day were not studied.

    Maintenance Therapy

    There is no body of evidence available from controlled trials to guide a clinician in the longer-term management of a patient who improves during treatment of an acute manic episode with risperidone. While it is generally agreed that pharmacological treatment beyond an acute response in mania is desirable, both for maintenance of the initial response and for prevention of new manic episodes, there are no systematically obtained data to support the use of risperidone in such longer-term treatment (i.e., beyond 3 weeks).

    Pediatric Use

    Safety and effectiveness of RISPERDAL® in pediatric patients with schizophrenia or acute mania associated with Bipolar I Disorder have not been established.

    Dosage in Special Populations

    The recommended initial dose is 0.5 mg BID in patients who are elderly or debilitated, patients with severe renal or hepatic impairment, and patients either predisposed to hypotension or for whom hypotension would pose a risk. Dosage increases in these patients should be in increments of no more than 0.5 mg BID. Increases to dosages above 1.5 mg BID should generally occur at intervals of at least 1 week. In some patients, slower titration may be medically appropriate.

    Elderly or debilitated patients, and patients with renal impairment, may have less ability to eliminate RISPERDAL® than normal adults. Patients with impaired hepatic function may have increases in the free fraction of risperidone, possibly resulting in an enhanced effect (see CLINICAL PHARMACOLOGY ). Patients with a predisposition to hypotensive reactions or for whom such reactions would pose a particular risk likewise need to be titrated cautiously and carefully monitored (see PRECAUTIONS ). If a once-a-day dosing regimen in the elderly or debilitated patient is being considered, it is recommended that the patient be titrated on a twice-a-day regimen for 2-3 days at the target dose. Subsequent switches to a once-a-day dosing regimen can be done thereafter.

    Co-Administration of RISPERDAL® with Certain Other Medications

    Co-administration of carbamazepine and other enzyme inducers (e.g., phenytoin, rifampin, phenobarbital) with risperidone would be expected to cause decreases in the plasma concentrations of active moiety (the sum of risperidone and 9-hydroxyrisperidone), which could lead to decreased efficacy of risperidone treatment. The dose of risperidone needs to be titrated accordingly for patients receiving these enzyme inducers, especially during initiation or discontinuation of therapy with these inducers (see CLINICAL PHARMACOLOGY and PRECAUTIONS ).

    Fluoxetine and paroxetine have been shown to increase the plasma concentration of risperidone 2.5-2.8 fold and 3-9 fold respectively. Fluoxetine did not affect the plasma concentration of 9-hydroxyrisperidone. Paroxetine lowered the concentration of 9-hydroxyrisperidone an average of 13%. The dose of risperidone needs to be titrated accordingly when fluoxetine or paroxetine is co-administered (see CLINICAL PHARMACOLOGY and PRECAUTIONS ).

    Directions for Use of RISPERDAL® M-TAB® Orally Disintegrating Tablets

    RISPERDAL® M-TAB® Orally Disintegrating Tablets are supplied in blister packs of 4 tablet units each.

    Tablet Accessing

    Do not open the blister until ready to administer. For single tablet removal, separate one of the four blister units by tearing apart at the perforations. Bend the corner where indicated. Peel back foil to expose the tablet. DO NOT push the tablet through the foil because this could damage the tablet.

    Tablet Administration

    Using dry hands, remove the tablet from the blister unit and immediately place the entire RISPERDAL® M-TAB® Orally Disintegrating Tablet on the tongue. The RISPERDAL® M-TAB® Orally Disintegrating Tablet should be consumed immediately, as the tablet cannot be stored once removed from the blister unit. RISPERDAL® M-TAB® Orally Disintegrating Tablets disintegrate in the mouth within seconds and can be swallowed subsequently with or without liquid. Patients should not attempt to split or to chew the tablet.

    HOW SUPPLIED

    RISPERDAL® (risperidone) tablets are imprinted "Janssen", and either "Ris" and the strength "0.25", "0.5", or "R" and the strength "1", "2", "3", or "4".

    0.25 mg dark yellow tablet: bottles of 60 NDC 50458-301-04, bottles of 500 NDC 50458-301-50, hospital unit dose packs of 100 NDC 50458-301-01.

    0.5 mg red-brown tablet: bottles of 60 NDC 50458-302-06, bottles of 500 NDC 50458-302-50, hospital unit dose packs of 100 NDC 50458-302-01.

    1 mg white tablet: bottles of 60 NDC 50458-300-06, blister pack of 100 NDC 50458-300-01, bottles of 500 NDC 50458-300-50.

    2 mg orange tablet: bottles of 60 NDC 50458-320-06, blister pack of 100 NDC 50458-320-01, bottles of 500 NDC 50458-320-50.

    3 mg yellow tablet: bottles of 60 NDC 50458-330-06, blister pack of 100 NDC 50458-330-01, bottles of 500 NDC 50458-330-50.

    4 mg green tablet: bottles of 60 NDC 50458-350-06, blister pack of 100 NDC 50458-350-01.

    RISPERDAL® (risperidone) 1 mg/mL oral solution (NDC 50458-305-03) is supplied in 30 mL bottles with a calibrated (in milligrams and milliliters) pipette. The minimum calibrated volume is 0.25 mL, while the maximum calibrated volume is 3 mL.

    Tests indicate that RISPERDAL® (risperidone) oral solution is compatible in the following beverages: water, coffee, orange juice, and low-fat milk; it is NOT compatible with either cola or tea, however.

    RISPERDAL® M-TAB® (risperidone) Orally Disintegrating Tablets are etched on one side with "R0.5", "R1", and "R2", respectively, and are packaged in blister packs of 4 (2 × 2) tablets.

    0.5 mg light coral, round, biconvex tablets: 7 blister packages per box, NDC 50458-395-28, long-term care packaging of 30 tablets NDC 50458-395-30.

    1 mg light coral, square, biconvex tablets: 7 blister packages per box, NDC 50458-315-28, long-term care packaging of 30 tablets NDC 50458-315-30.

    2 mg light coral, round, biconvex tablets: 7 blister packages per box, NDC 50458-325-28.

    Storage and Handling

    RISPERDAL® tablets should be stored at controlled room temperature 15°-25°C (59°-77°F). Protect from light and moisture.

    Keep out of reach of children.

    RISPERDAL® 1 mg/mL oral solution should be stored at controlled room temperature 15°-25°C (59°-77°F). Protect from light and freezing.

    Keep out of reach of children.

    RISPERDAL® M-TAB® Orally Disintegrating Tablets should be stored at controlled room temperature 15°-25°C (59°-77°F).

    Keep out of reach of children.

    7503229

    US Patent 4,804,663

    Revised April 2005

    © Janssen 2003

    RISPERDAL® tablets are manufactured by:

    JOLLC, Gurabo, Puerto Rico or

    Janssen-Cilag, SpA, Latina, Italy

    RISPERDAL® oral solution is manufactured by:

    Janssen Pharmaceutica N.V.

    Beerse, Belgium

    RISPERDAL® M-TAB® Orally Disintegrating Tablets are manufactured by:

    JOLLC, Gurabo, Puerto Rico

    RISPERDAL® tablets, RISPERDAL® M-TAB® Orally Disintegrating Tablets, and oral solution are distributed by:

    Janssen Pharmaceutica Products, L.P.

    Titusville, NJ 08560

    Janssen

    PHARMACEUTICA PRODUCTS, L.P.


Subscribe to the "News" RSS Feed RSS

  ۞



 

About Us   |  Privacy Policy   |  Terms of Use   |  Contact Us  

© 2012 RxDrug News 1999-2016. All rights reserved